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Abstract— Circumferential edge debonding is considered for structural configurations cor-
responding to patched cylindrical panels, under a variety of loading conditions. These include
applied circumferential tension, radial three-point loading, and applied pressure. The effect of
support conditions on the evolution of the compaosite structure is also examined as are the effects of
relative stiffness and arc length of the patch with respect to those of the base panel. The problems
are approached from a unified point of view, as a moving interior boundaries problem in the calculus
of variations, resulting in a selfconsistent model of the intact and debonded segments of the
composite structure, the individual primitive structures. and the corresponding conditions which
define the intermediate boundaries of the bonded region and a region of sliding contact. Numerical
simulations based on analytical solutions reveal characteristic behavior of the evolving structure
under load. Copyright ¢ 1996 Elsevier Science Ltd

1. INTRODUCTION

A method of repair for damaged (cracked) structures which is receiving increased attention
of late, particularly with regard to aircraft structures. is the adherence of a “patch” over
the damaged surface in an attempt to transfer the load to the patch and thus alleviate the
stress intensity in the vicinity of the damage. (See for example, Park er @/., 1992, or Baker,
1993.) Similar “piggy-back™ configurations may occur, for example, in structures where a
sensor/controller material layer has been bonded to the base structure or for adhesively
bonded lap-joints. (See for example, Oplinger, 1994, and Tsai and Morton, 1994.) The
question of debonding of the patch from the base structure is an issue, as the effectiveness
of the overall structure may be compromised once debonding ensues.

Typically, the patch is designed and its effectiveness evaluated with regard to alleviating
the in-plane stress intensity and load transfer by considering a plane stress type analysis for
a flat structure (Baker, 1993, Chiu et al., 1994, Chue et al., 1994, Paul and Jones, 1992,
Park er al., 1992, Roderick, 1980, Sih and Hong, 1989, Tarn and Shek. 1991). In their
papers, Sih and Hong (1989) considered the planar interaction of edge debonds and a
thickness crack. as well. for the case of circular patches adhered to a flat panel, while
Roderick (1980) and Baker (1993) also considered interior debonding in the vicinity of the
crack in a patched flat panel. In addition, we note that the related problem of edge delamin-
ation in composites has also been studied to some extent (see, for example, Schellenkens
and Borst, 1993). In a recent paper by Bottega (1995), the issue of edge debonding was
considered for flat structures configured in the aforementioned manner. Specifically, the
problems of edge debonding in patched plates and lap-joints were considered, where it
was seen that out of plane bending together with in-plane stretching strongly influenced the
debonding behavior of the evolving structure. Many characteristics of the debonding
structure were demonstrated including the existence of a contact zone under certain
conditions, the influence of support conditions on the debonding behavior, and the influence
of the relative patch stiffness and length, among others.

As many actual structures possess nonvanishing curvature it would appear necessary
to consider parallel studies for similarly configured curved structures. This is the subject of
the present work. In particular we consider the problem of edge debonding in patched
cylindrical panels for three types of loading conditions and a variety of support conditions
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Fig. 1. Patched cylindrical panel under various loading conditions: (a) applied circumferential
tension. (b) three-point radial loading, (¢) applied pressure (shown with clamped-fixed supports).

which are the analogs of those considered by Bottega (1995) for patched plates. The loading
types include (i) applied circumferential tension, (ii) radial three-point loading, and (iii)
applied internal pressure loading (Fig. 1). It will be seen that while these structures exhibit
many of the characteristics demonstrated by their flat counterparts, the curved structures
do, however, behave differently. As in related studies (for example, Bottega, 1983, 1988,
1994. 1995, and Loia and Bottega, 1994) the problem is formulated from a unified point of
view. as a moving intermediate boundaries problem in the calculus of variations—with a
shallow shell theory used to model the base structure and the patch individually and a
Griffith type energy criterion incorporated to govern debonding—yielding a self-consistent
formulation for the evolving composite structure.

2. FORMULATION

Consider the thin cylindrical structure comprised of a base panel/shell of (angular)
half-span @ to which a cylindrical patch of half-span ®, < ® is adhered over the region S, :
fe0. o] as shown in Fig. 2, where 8 is the angular coordinate measured from centerspan
of the structure. Further, let us consider the debonded portion of the patch to maintain
sliding contact over the region S, : 6 € [«, f] immediately ahead of the bonded region, while
the portion of the patch defined on S5 : 8 €[, @] is lifted/separated from the base structure.
These three regions will be referred to as the “‘bond zone™, “‘contact zone™ and “lift zone™,
respectively. The domain of definition of the portion of the patch in the lift zone is S;,:
Oe[pf. ®,] such that S;, = S;. When referring to the portion of the patch in region S, it

Fig. 2. Half span of panel showing characteristic lengths/angles and coordinates.
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will be understood that the corresponding subregion is indicated. At this point, let us also
define the “‘conjugate bond zone size” 2* = ® —x as indicated in the figure. We shall be
interested in examining the evolution and response of the “composite structure” when it is
subjected to (i) applied circumferential tension, (ii) three-point radial loading, and (iii)
applied (internal) pressure. In what follows all length scales are normalized with respect to
the dimensional radius R of the undeformed structure, and the common surface or interface
between the patch and base panel, and its extension, will be used as the reference surface.

Both the base structure and the patch will be modeled using the shallow shell model
employed in Bottega (1988a—~d and 1994) and Loia and Bottega (1994). The corresponding
relations for the normalized (centerline) membrane strains ¢{6) and e,(#) and the nor-
malized curvature changes x/(0) and «,(0) for the base structure and patch in each region
are thus respectively given by

e, = u}—w,—&-l}u‘,’:. K, = wi+w,. fes, (la.b)
(i=1,23)

‘ t -2 . )
Coi = Uy — Wyt 3Wois Ky = W+, 0§,

(1c.d)
In eqns (1a)-(1d). u;, = u(0) (positive in direction of increasing 0) and w; = w{(0) (positive
inward) respectively correspond to the circumferential and radial displacements of the
centerline of the base panel in region S, and u,, = u,,(0) and w,, = w,(0) correspond to the
analogous displacements of the centerline of the patch. In addition, superposed primes
indicated total differentiation with respect to 6.

The displacements u;(0) and u,(0) and the membrane strains ¢/(f) and e,(0) of the
substructure centerlines are related to their counterparts at the reference surface, *(6) and
wi(0). and eX(0) and ek (6), by the relations

N h o . h, .
u¥=u+ iw,. S I U 1,2,3) (2a,b)
h h, .
eX¥=¢ + Nt X =e,— ?' K. (i=1,2,3) (3a,b)

where h « 1 and 4, « 1 correspond to the normalized thickness of the base panel and patch,
respectively. At this point let us also introduce the normalized membrane stifftness C and
bending stiffness D of the base panel. and the corresponding normalized membrane and
bending stiffness, C, and D,. of the patch. The normalization of the stiffness of the primitive
structures is based on the bending stiffness of the base panel and the radius R of the system
in the undeformed configuration. Hence,

C=12#", D=1, C,=CEyh,. D,=Eyh;, (4a—d)

where :

E/(1=v})

hy =h N
E/(1—v7)

‘h, Ey=E,/E or E,= (4e.f)

pl

E and E, correspond to the (dimensional) elastic moduli of the base panel and patch,
respectively, and v and v, correspond to the associated Poisson’s ratios.

Paralleling the developments in Bottega (1994 and 1995) we next formulate an energy
functional in terms of (1) the strain energies of each of the individual segments of both the
base panel and patch independently and expressed in terms of the reference surface variables,
(i1) the work done by the applied loading for each case of interest, (iii) constant functionals
which match the radial displacements in the contact zone, and both the radial and cir-
cumferential displacements in the bond zone (the Lagrange multipliers in this case cor-
respond to the interfacial radial stress and interfacial radial and circumferential shear
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stresses respectively), and (iv) a delamination energy functional corresponding to the energy
required to create an arc length of new debond. We thus formulate an energy functional
I1, as follows:

3

=Y {(Ug+UG+UG+ U, ~A—#+T (5)

i=1
where:
7 r
Uy = f \Dk}dO. U, = J IDKZdO. (i=1-3) (6a,b)
S; s,

respectively correspond to the bending energies of the base panel, and of the patch, in
region i.

rEpi

Uy = [ 1Cedo. Uy, =J 1Chepdb. (i=1-3) (7a,b)
> s,

vS;

are the corresponding membrane energies of the base panel and patch. respectively, Ais a
constraint functional, given by

2 P
A= Zl {[ a,»(n,',,,—n',)d0}+J T(u} —uf) do, (8a,b)
i= s, s,

where o,(i = 1, 2) and t are Lagrange multipliers (g, < 0), # corresponds to the work
done by the applied loading and is given by

# = Tous(1). or # =Quwy(l), or # = — Z {J pw; d()}, (9a,b,c)
i=1 S;

depending upon the specific problem of interest, where T represents the normalized applied
circumferential tension, 0, is the normalized intensity of the applied radial line/point loads
for the 3-point case, and p corresponds to the normalized applied (internal) pressure.
Further,

[ =2y(x*—x¥) (10)
1s the delamination energy.™ where
¥ =1—xu (11)

is the ““conjugate” bond zone (half) length as defined earlier, af corresponds to some initial
value of o*, and 7 is the normalized bond energy (bond strength). The normalized loads
Ty, Qo. and p are related to their dimensional counterparts T, 0, and p, by

b
|
>
<
e
I
Q
%
S

, P =[§R3/D_‘

where D is the dimensional bending stiffness of the base panel. In a similar manner, the
normalized bond energy 7 is related to its dimensional counterpart 7, by

+ More generally, 7 may be considered to be an implicit function of o*. In this event the functional T is
defined in terms of its first variation 8I" = 2y dx* (i.e.. the virtual work of the generalized force 7).
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o=

/

R*/D.

~2)

The normalized interfacial stresses ¢,, 0, and t (i.e., the Lagrange multipliers) are related
to their dimensional counterparts in a manner analogous to that of the pressure.

We next invoke the Principle of Stationary Potential Energy which, in the present
context, may be stated as

oIl =0, (12)

where & corresponds to the variational operator.

Taking the appropriate vanations, allowing the interior boundaries « and f to vary
along with the displacements, we arrive at the correponding differential equations, boundary
and matching conditions, and transversality conditions (the conditions which establish
values of the “‘moveable” interior boundaries % and f, to be found as part of the solution
together with the associated displacement field, which correspond to equilibrium con-
figurations of the evolving structure). After eliminating the Lagrange multipliers from the
resulting equations, we arrive at a self-consistent set of equations, and conditions (including
energy release rates) for the evolving composite structure. We thus have

MY +MF—(NMWFY -N¥=—p, N¥ =0, (feS,;i=12) (13a,b)
M5+ My —(Nswi) —Ny=—p, N, =0, (0eS3) (14a.,b)
My +M,; ~(Npw,) =N,y =0, N,,=0, (0e5;,) (15a.,b)
with

wX0) = wil) = w,(0). (BeS,;i=12) (16a,b)
KI*(H) = K!(G) = K',,,'(G). (gestslz 172) (160,d)
ut(0) = uf (0), (PeS)) (16¢)

where
Ni(8) = Ce;(8) and N, (0) = Cpep,-(G) (i=1-3) (17a,b)

are the normalized resultant membrane forces in the base panel and patch, respectively, in
region S{(i = 1-3),

N¥(H) = C*ef(0)+ B*k¥(0) = N, + N1, (18a)
M¥O) = A*k*(0) + B*e*(0) = D*k*(0) + p*N*, (18b)

respectively correspond to the normalized membrane force and normalized bending
moment in the bonded portion of the composite structure,

J h
N3(0) = N, +N,,. M*0) = Dx%(0)+ (g N, — 2N2), (19a.b)

respectively correspond to the normalized resultant membrane force and bending moment
of the debonded portion of the composite structure in the contact zone, and

h h
M. (0) = Dx,(0)— EJV_% M,5(0) = D,x,5(0)+ pr,% (20a,b)

correspond to the bending moments in the base cylinder and patch segments, respectively,
in the region of separation.
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The stiffnesses of the composite structure defined by eqns (13), (18) and (19) are found,
in terms of the stiffnesses and thicknesses of the substructures, as

A* = D+ D, +(h/2)’C+(h,/2)°C,. (2la)
B* = (h,/2)C,—(h/2)C, (21b)
C* = C+C,. 1)
D* = A% —p*B* = D_+ (h*/2)*C., (21d)

where :

p* = B*/C*, D, =D+D,. h*=h+h, and C,=CC,/C*  (2le-h)

The quantity p* is seen to give the radial location of the centroid of the composite structure
with respect to the reference surface, D, is the bending stiffness of the debonded segment
of the composite structure in the contact zone, A* « | is the normalized thickness of the
composite structure and C, is an effective (series) membrane stiffness.

The associated boundary and matching conditions obtained similarly take the forms:

uf(0) =0, w¥(0)=0. and (22a,b)
[M¥—N¥¥],., =0 (applied pressure or circumferential tension) (22¢)
or w¥0) =0, (three-pointloading) (22¢%)

uF(a) = u¥(x) = ufh(x). N¥(x) = N¥(2), (23a,b.,c)
wko) = wi(a), wi'(x) = w¥(2). (23d,e)
M¥o) = M¥a). [M¥ —N*W¥],_, = [M¥ —Nfw¥],_.. (23f,¢)
uf(P) = wu¥(f). NL(f) = Ni(p). (24a.,b)

M:‘:(ﬁ) = V,Tz(/j)- ]V[)Z(/))) = Npa(ﬁ)~ (24¢.d)

wi’k(ﬁ) = ‘1‘3(/{) = n‘p}(b’)~ (24eqf)

Wi () = wi(f) = w, s (). (24g.h)

ME(B) = Mi(B)+ M,5(p). (241)

(M =Ny = M= Nawiloy + M — Npswialowps (24))
Ny (D,) = K,3(D,) = [M; —N,,;uﬂ‘;ﬂ](,:q,p =0, (25a.b,c)

u; (@) =0 or N(®)= T,(T,prescribed), and (26a,a")

wi(@) =0, and wi(®)=0 or ~;(®) =0, (appliedpressureand tension)
(26b,c.c’)
or
[Mi—=Nwilpo = —Qo(Q, prescribed) and  w, (®) = 0. (3-point loading)
(26'b,c)

The transversality condition for the propagating bond zone boundary, 8 = «, takes the
following forms depending upon the presence or absence of a contact zone. Hence,
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T %y = | KD 2 ZC,,l p2 o

1 I
- [2 D*%* + %*N"iz] =2y (fza") (27a)
<~ 0= x

1 1 |
G lo) = [—DK%+£D K +*N?+RNZ}
g 2 I a0 2,

1 1
DR NE | =2 (B=x) (2TH)
[2 o ] v

where 4, {2} and % ,{«} are identified as the energy release rates. The conditions (27)
suggest the following delamination criterion :

if, for some initial value of « = o, we have that %{o,} > 27, then debonding occurs
and the system evolves (x decreases—a* increases) such that the corresponding equality
(27a) or (27b) is satisfied. If %{x,} < 27, debonding does not occur.

For a propagating contact zone boundary 6 = f. the associated transversality con-
dition reduces to the form

K’L“((ﬁ) = K}(B) = Kp}(/j)s (ﬂ < (I)p) (28a5b)

to which we add the qualification

K{(f7) > K,:(B7) (28¢)

to prohibit penetration of the base panel and path for #/e S;,. It is thus seen that such a
boundary is defined by the point where the curvature changes of the respective segments of
the structure are continuous. The system (1)-(28) defines the class of problems of interest.

The boundary conditions (25), together with eqns (15a,b), indicate that the “flap”
(i.e.. the segment of the debonded portion of the patch which is lifted away from the base
structure) is unloaded and hence that

Noal) = K,5(0) = M, (0) = 0. (YO€S,,) (29a.,b.c)

Further, integration of eqns (13b) and (14b), imposition of the associated matching con-
ditions (23c), (24b), and (24d), and incorporation of eqn (29a) yields the results

N¥=N,=N, =N, =constant, N,»=0. (30)

The remaining equations and conditions are modified accordingly, with the trans-
versality conditions (27)—(28) taking the forms

G- [% D k%> —%D*K"j3+ 21—CN3:|”1 =2y, (f=a7) (27a)
G yla} - [; DK —1D*K% + 51—7\/5} =2y, (B=2) (27'b)
2 2C, e
and
KEB) =w3(B)=0. x;(f*) >0, (B<®,) (28’a,b,c)

where :
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1/C, = (Cg’fl. (31)

It may be seen from eqn (28") that a propagating or intermediate contact zone boundary
may occur only if conditions are such that an inflection point occurs in the interval
a < 0 < ®@,. If not, the system will possess either a full contact zone (f = ®@,), or no contact
zone (f = a). For the former case, the lifted segment of the flap (region S,,) will not exist,
and the condition

K (2") <0 (8=, (28"a,b)

must be satisfied.

Integrating the strain-displacement relations and imposing the corresponding bound-
ary and matching conditions for the circumferential displacements results in the integrability
condition given by

| o h « | 3 s T
u,(P) = N, ?+F — §+p w (1)+,; -((l—p O )w;—5w/7) do, 32)

Sy

where 0, is Kronecker’s delta. The counterparts of eqns (13a) and (14a) and the cor-
responding boundary and matching conditions obtained upon substitution of the results
(29) and (30), together with the transversality conditions (27°) and (28°), and the inte-
grability condition (32), transform the problem statement into a mixed formulation in
terms of the transverse displacement w(0) (i = 1--3), the membrane force N,, and the
moving boundaries x and .

3. ANALYSIS

We next present the basis of a linear analysis of the problems of interest based on the
formulation presented in the previous section. As in Bottega (1995) we first examine the
existence of a contact zone.

Contact zone

Upon substitution of the linearized version of eqn (13a) into the corresponding equa-
tion for the patch in region 2 (not presented), we arrive at an expression for the cor-
responding (radially directed) interfacial stress, ., given by

g, = —(p—Ny)D,/D.. (33)

When contact between the surfaces of the base panel and the patch occurs, the contact
stress will necessarily be “compressive™ (i.e., g, < 0). It may be seen from eqn (33) that
g, = 0 when p = 0 (N, = 0), from which it may be concluded that a contact zone does not
exist for the cases under consideration where the applied pressure vanishes. For non-
vanishing pressure it is seen that when p > N, the contact stress is compressive and hence
that a contact zone may exist for the case of pressure loading. Further contingencies
regarding the presence of an intermediate or propagating contact zone concern the mag-
nitudes and signs of the curvatures of the composite structure and substructures as specified
by eqns (28’a—c) as discussed at the end of the previous section. Additionally, if an inflection
point does not occur on the interval [o. @] then a ““full contact zone” (f = ®,) will be
present (the entire debonded segment of the patch will be in sliding contact with the base
panel) provided conditions are such that k.(x~) < 0. If these conditions are not met either,
then no contact zone exists for the pressure loaded case as well.
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Evolving structure

Paralleling the analysis of Bottega (1995) for similarly configured flat structures, we
first define the normalized loading parameter 4 and characteristic deflection A, for each
of the specific problems (applied tension, 3-point radial loading, and applied pressure),
respectively, as follows:

=T A=u;(®)}; {A=00.A=wi(®)}; {A=p,A=—w(0)}. (34a—<)
We shall also define the *“global stiffness” for each particular problem as
K= /A, (35)

for each (4, A) pair defined in eqn (34).

Since we shall perform a linear analysis, the response in each case will be found to be
proportional to the loading parameter for the specific problem under consideration. The
integrability condition (32) will then take the general form

u; (@) = AF i (@) + No F y(a), (36)

where #,(x) and # (o) are functions obtained by substituting the specific analytical
solution for the transverse displacement into eqn (32). For problems where 7 = T, we
have, from condition (26a"), that N, = T,,. Equation (36) then gives the normalized cir-
cumferential edge displacement as a function of the applied tension for this case. For other
loading types, eqn (36) gives the normalized membrane force N, as a function of 4 for fixed
end conditions (u(®) = 0), and gives the circumferential edge displacement as a function
of /. for free edge conditions, where N, = 0 from eqn (26a’).

For each case and for each increment in load, the particular equilibrium configuration
of the evolving system has associated with it a particular value of the contact zone boundary
B for a given value of «. It was established in the previous subsection that f§ = « for both
the case of applied circumferential tension and the case of three-point radial loading. For
the case of internal pressure loading, however, we must first seek a value of fra < ff < @,
such that eqns (28'a—) are satisfied. If no such § can be found, then either f = 2 or f = @,
The latter can only occur if the kinematic condition k(2 ™) < 0 is satisfied. If this condition
is not satisfied either, then f = a.

With the above established, the energy release rates can be written in terms of the
loading parameter explicitly, for each case under consideration. The equations for the
growth paths/ threshold curves A vs « (or 2*) and A vs « (or «*) may then be found directly
from the transversality conditions (27°), and take the general forms

=iy = 1/ QS B, A* = AL/ 2y = K '@ S, )i/ Qs S, ).
(37a,b)

where Q(x; S, f) is the normalized energy release rate per square of the normalized load, S
is the set of stiffnesses of the structure, and (4*, A*) correspond one to one with each (4, A)
pair defined earlier in this section. In this way, the evolution of the debonding structure
may be characterized using the analytical solution for each particular problem of interest.
Results for specific configurations are presented in the next section.

4. RESULTS AND DISCUSSION

In this section, results are presented for the following loading types: (1) applied
circumferential tension, (2) three-point radial loading, and (3) applied (internal) pressure.
In each case analytical solutions for the corresponding problem based on a linearization of
the formulation presented in Section 2 are employed to generate the corresponding threshold
curves and stiffness degradation curves. In what follows, we consider the specific base
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Fig. 3. Theshold curves;delamination paths for patched panel under applied circumferential tension
for the case of hinged-free supports: (a) normed applied tension vs conjugate bond zone size, (b)

normed circumferential edge deflection vs conjugate bond zone size, (¢) global stiffness as a function
of conjugate bond zone size.

structure of half-span ® = 0.4 and normalized thickness # = 0.02, with a patch such that
h, = h, for the modulus ratios £, = 0.1, 1.0, and 10.0. With the exception of the case of
three-point radial loading, the effect of the support conditions on the behavior of the
evolving structure is examined. Results corresponding to each loading type are discussed
separately.

4.1. Applied circumferential tension

Results corresponding to the curve where a circumferentially directed tensile load of
normalized magnitude 7, is applied to the base structure at the edges § = +® are displayed
in Figs 3-4 and presented in the form of plots of the renormed load T* = Ty /\/2— , renormed
circumferential edge displacement A¥= u,(®)/,/2y. and global stiffness K = T*/A¥ as
functions of the conjugate bond zone boundary o*. The loaded edge is considered to be
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Fig. 4. Threshold curves for patched panel under applied circumferential tension for the case of
clamped-free support conditions: (a) normed applied tension vs conjugate bond zone size, (b)

normed circumferential edge deflection vs conjugate bond zone size, (c) global stiffness as a function
of conjugate bond zone size.

{c)

free to translate circumferentially, and either hinged (free to rotate) or clamped (fixed
against rotation). As discussed in the first part of Section 3, a contact zone does not exist
for the given structure under this type of loading. Examination of the results corresponding
to hinged supports, Figs 3a-c, shows that debonding occurs in an unstable and catastrophic
manner for force controlled loading. However, under displacement controlled loading, the
results indicate that debonding may occur in a catastrophic manner, or in a stable manner
depending upon the initial size of the bonded region. Thus, critical conjugate bond zone sizes
characterize the ensuing behavior of the debonding structure for displacement controlled
loading. The corresponding degradation of the global stiffness K is represented in Fig. 3c.
It is seen that patches with greater stiffnesses debond at lower load levels than their more
compliant counterparts.
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While the general behavior for the case of hinged supports is seen to be qualitatively
similar to the corresponding behavior indicated for the analogous problem concerning flat
structures (Bottega, 1995), the results for the case of clamped supports displayed in Figs
4a—c differ substantially from their counterparts for flat structures. Examination of the
threshold curves for the case of clamped supports shows similar behavior for both force
controlled (Fig. 4a) and displacement controlled (Fig. 4b) loading. In each case, it is seen
that relatively large bond zones (relatively small «*) separate in a stable manner initially
until the indicated peak is reached, at which point catastrophic debonding occurs. For
bond zones whose initial conjugate bond size is beyond the peak, debonding characteristics
are qualitatively similar to those for displacement controlled loading for the case of hinged
supports. That is debonding occurs in a catastrophic manner, in an unstable followed by a
stable manner, or in a stable manner depending upon the initial size of the bonded region.

4.2. Three-point radial loading

We next present results for the case where the structure is supported by a knife edge
at centerspan and is subjected to an inwardly directed radial point/line load of normalized
intensity Q, applied at each edge, 8 = + ®, of the base panel. The edges are considered to
be free to translate and to rotate. As for the case of applied circumferential tension, the
discussion of the first part of Section 3 indicates that no contact zone exists for the present
case. Results are presented in the form of threshold curves in terms of the renormed load
intensity 0* = Qo/\/?)’ and renormed radial edge displacement A% = w,(®)/\/27 as a
function of the conjugate bond zone boundary, «*, in Figs 5a and 5b while the degradation
of the global stiftness of the structure, K = Q*/A%, is presented in Fig. 5c. It is seen that,
as for the analogous problem concerning flat structures (Bottega, 1995), debonding under
force controlled loading occurs in a catastrophic manner, while it occurs in a stable manner,
in an unstable followed by a stable manner, or in a catastrophic manner, depending on the
initial size of the bonded region, when the deflections are controlled.

4.3. Applied (internal) pressure

The behavior of a patched cylindrical panel subjected to applied internal pressure will
be examined for both the case of hinged supports and the case of clamped supports. For
each type of support pertaining to rotation we will also consider the effects of fixing or
freeing the supports with regard to circumferential translation. We thus consider “hinged-
free” and ‘‘hinged-fixed”” support conditions, and *‘clamped-free” and “clamped-fixed”
support conditions. We shall consider the case of hinged support conditions first.

Hinged supports. Threshold and stiffness degradation curves for the case of hinged-
free support conditions are displayed in Figs 6a—c, while those for the case of hinged-fixed
support conditions are presented in Figs 7a—c. As for the analogous problems concerning
flat structures (Bottega, 1995), no contact zone was found for these cases. Consideration
of Fig. 6a, which displays the threshold value of the renormed pressure p* = p/\/2_7 asa
function of the conjugate bond zone size, shows that debonding occurs in a catastrophic
manner for force controlled loading. The threshold curves for the corresponding charac-
teristic deflection A¥ = —w(0)/,/2y indicate that, for the case of deflection controlled
loading, debonding occurs in a catastrophic, unstable followed by stable, or stable manner
depending upon the initial value of the conjugate bond zone size. The corresponding
stiffness degradation curves are displayed in Fig. 6c, where K = p*/A¥. If the base panel is
fixed with regard to circumferential translation at the support (hinged-fixed), thus intro-
ducing a resultant circumferential tension in the base panel, the corresponding behavior is
seen to be stabilized somewhat as indicated by the threshold curves shown in Figs 7a and
7b and the associated stiffness degradation curves of Fig. 7c. Thus, the system is seen to
behave in an unstable followed by a stable manner or in a stable manner for both force
and deflection controlled loading situations, depending upon the initial size of the bonded
region. Catastrophic failure is indicated only for patches which are initially bonded over
almost the entire span of the base structure, for the case of force controlled loading, and in
addition only for the case of a relatively compliant patch for the case of deflection controlled
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Fig. 5. Threshold curves;delamination paths for patched panel under radial three-point loading:
(a) normed load intensity vs conjugate bond zone size, (b) normed radial edge deflection vs conjugate
bond zone size, (¢) global stiffness as a function of conjugate bond zone size.

loading. In all cases it is seen that the stiffer patches debond at lower load levels than their
more compliant counterparts. It may be seen from Fig. 7c that the “‘global stiffness” actually
increases slightly, over a range of a*, as the damage progresses for the patches with modulus
ratios E, = 0.1 and E, = 1.0. This misleading tendency occurs because the global stiffness
is characterized as the ratio of the pressure to the deflection at a single point—the center of
the span of the structure. For the cases indicated, the behavior of the composite structure
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is such that much of the deformation occurs in the base panel within the region of separation.
This is demonstrated for the case of a bond zone of half-length x = 0.7 («* = 0.3) in Fig.
8, where the transverse deflection of the entire (half) span is shown as a function of the
conjugate angular coordinate §* = ®—@ (the distance from the supported edge) at the
threshold level.

Clamped supports. In this last case, we consider the evolution of the structure when the
edge supports are clamped so as to prohibit rotation. Both the case where the base panel is
free to translate circumferentially (clamped-free supports) and the case where the base
panel is restricted from translating circumferentially (clamped-fixed supports) are
considered. Unlike, any of the other cases considered to this point, the system is found to
possess a full contact zone (f = ®,) for relatively long patches which are bonded over a
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size, (b) normed radial centerspan deflection vs conjugate bond zone size, (c) global stiffness as a
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sufficient portion of the span. Intermediate contact zones (x < f < ®,) are not, however,
observed.

Figures 9a, b and 10a, b show the threshold curves for the case of clamped-free support
conditions when the debonding structure possesses a full contact zone. Figure 9 depicts
results for the specific patch size of relative length ®,/® = 0.9 and compares the threshold
curves for various modulus ratios E,. Each path shown is seen to be asymptotic and is cut
off near its limiting value of a*. It is thus seen that patches of these relative lengths, which
are initially bonded over most of the span of the base structure, debond in a stable manner
and ultimately arrest. Such behavior is typical of relatively long patches as indicated by
the threshold curves shown in Figs 10a and b. In these figures the delamination paths
corresponding to various relative patch lengths, ®,/® = 1.0, 0.9, 0.8, are displayed for the
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case of unit modulus ratio (£, = [.0). For this case, patches of lengths ®,/® < 0.78 possess
no contact zone at all. The corresponding threshold curves for the case of no contact zone
are presented in Figs 11a and b, where each path is seen to approach an asymptotef. It is
thus seen that the behavior of the evolving structure for patches whose initial conjugate
bond size is greater than this asymptotic value is qualitatively similar to that for the case
of hinged-free supports discussed earlier. That is, debonding occurs in a catastrophic
manner for pressure controlled loading, and in a catastrophic, unstable followed by stable,
or in a stable manner for deflection controlled loading. The corresponding behavior of the
system differs, somewhat, when the supports are fixed against translation as well as rotation
(clamped-fixed) as indicated by the curves presented in Figs 12-15.

Threshold curves corresponding to configurations where the structure possesses a full
contact zone are displayed in Figs 12 and 13, while those corresponding to the situation of
no contact zone are displayed in Figs 14a—c along with the associated stiffness degradation
curves. As for the parallel studies pertaining to similarly configured flat structures (Bottega,
19935), contact zones are seen to be present for relatively long patches which are bonded
over most of their (arc) length, only. Figure 12 shows the delamination paths for a patch

+ A companion asymptotic branch of each curve is found for values of x* to the left of the corresponding
asymptote. These branches are not shown, however, since they are. in general, never achieved due to the presence
of a full contact zone as indicated by the results shown in Figs 9 and 10.
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which covers the entire base panel (®,/® = 1.0) for the modulus ratios £, = 0.1 and
E, = 1.0, when the system possesses a full contact zone. As for the corresponding study
involving similarly configured flat structures (Bottega, 1995), no contact zone is found for
the relatively stiff patch (£, = 10.0). Full contact zone paths corresponding to patches of
various sizes (®,/® = 1.0, 0.9, 0.8) are shown in Figs 13a and b for £, = 0.1. The paths in
both Figs 12 and 13 are seen to approach asymptotes separating stable and unstable
debonding, the exception being the path corresponding to E, = 1.0 for the case where
®,/® = 1.0 of Fig. 12 (which exhibits an unstable branch only—the asymptote and stable
branch being shifted out of the range of allowable values of 4*). In addition, the threshold
curves for patches which are short enough are seen to only possess an unstable branch, as
seen in Fig. 13 for ®,/® = 0.8. Thus, relatively long patches that are initially bonded over
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most of their length are seen to exhibit stable debonding, and to ultimately effectively arrest,
with o* approaching the corresponding asymptotic value, as the pressure (or characteristic
displacement) is increased. Similarly configured “long™ patches with smaller initial bond
zones (a* to the right of the corresponding asymptote) are seen to debond in an unstable
manner once the threshold level of the pressure (displacement) is achieved. Once initiated,
unstable debonding continues until the cutoff point of the path is achieved at which point
the contact zone ceases to exist. Debonding is then described by the paths displayed in Fig.
15 and is seen to be catastrophic. As the full contact zone paths (Figs 12 and 13) lie above
the corresponding paths for no contact zone (Fig. 14), patches with initial conjugate bond
zone sizes to the right of the asymptote are seen to debond catastrophically once the
threshold level is achieved. (The two paths are superimposed in Fig. 135, for the case where
E, =0.1and ®,/® = 1.0.) This behavior can be explained as follows ; as discussed in section
3 of this paper, the presence or absence of a contact zone is dependent upon the presence
and location of an inflection point and/or the signs of the curvature changes across the
bond zone boundary. For the case of the stiff patch (£, = 10.0), the most severe deformation
occurs in the unbonded portion of the base structure, hence the inflection point never occurs
in the bonded region. With regard to the more compliant patches ; for relatively large bond
zones, an inflection point occurs within the bonded region of the structure and the curvature
changes of the base panel and composite structure at either side of the bond zone boundary
are both negative. and hence a full contact zone is present. For the case of the compliant
patch (E, = 0.1) the deformation is such that the inflection point is sufficiently far from the
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bond zone boundary and so becomes “trapped” for large enough bond zones, and debond-
ing is ultimately arrested. For slightly smaller bond zones this is not the case, nor is it so
for the intermediate patch (E, = 1.0). For these cases, as unstable debonding of the patch
from the base panel progresses in the direction away from the edge of the structure, the
inflection point moves toward the bond zone boundary until it encroaches upon it. At this
point the jump in curvature change across 6 = « is such that a contact zone cannot exist
and the debonded flap “lifts off”” from the base panel. When this occurs, delamination
ensues via eqn (27'b) and the system debonds catastrophically. For patches with initial
bond zone sizes small enough (x* large enough) such that a contact zone does not exist
initially, it is seen from Fig. 14 that the debonding process is stable or perhaps unstable
followed by stable for both pressure controlled or deflection controlled loading, with the
exception of the case of E, = 0.1 where it is seen that structures initially possessing relatively
large bond zones will debond catastrophically.

4.4. Comments on the influence of delamination modes for transverse loading

With regard to the influence of delamination modes, we consider the possibility that
the debonding scenarios discussed may be altered somewhat if the delamination mode ratio
(or “crack loading phase™) varies radically and in a suitable fasion, as the bond zone
boundary propagates under interface conditions in which “mode mixity” (see, for example,
Hutchinson and Suo, 1992) is an issue. This may be seen not to be the case, however, for
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the loading cases considered, even for the dramatic transition from mode-I1I dominated
debonding with a contact zone to debonding without a contact zone observed for the case
of the pressure loaded panel with clamped-fixed supports. Calculations of the ““large scale”
interfacial stresses (see Appendix A) show g,(a) to be compressive and 7(a) to maintain the
same sign for all a, and both ¢,(«) and t(x) to vary smoothly with =, for each case when a
contact zone is not present. Similarly, o,(«) and 7(«) are found to vary smoothly with a,
with 7(x) maintaining the same sign, when a contact zone is present. However, for the case
of clamped-fixed supports, the shear (and 6, « |1]) is in the opposite sense as that when the
contact zone is absent. Thus there is a ““shear reversal” when "lift off”” occurs for this case.
If o, and 1 are considered to represent the “*distant loading’ (or some average measure)
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with regard to local small scale effects, then their characteristics appear to support the
notion that the local (“small scale’) stress field, and hence the local mode ratio/phase,
varies smoothly with % (or maintains pure mode-1I) as well, for these cases. If this is so,
and in view of the above, it 1s anticipated that the delamination modes have little influence
on the debonding scenarios discussed for the particular loading conditions considered.

5. CONCLUDING REMARKS

The problem of edge debonding in patched cylindrical panels has been considered for
a variety of loading and support conditions. It was seen that the manner of support may
significantly affect the debonding behavior of the composite structure. It was observed, for
the loading conditions considered. that a contact zone may exist for the case of applied
internal pressure and that the presence or absence of such a contact zone is dependent upon
the relative length of the patch and the corresponding relative stiffness of the patch. Such
a contact zone was seen not to propagate and hence to cover the entire span of the debonded
segment of the patch, unlike the more complex behavior observed for related studies
concerning debonding in cylindrical structures (Bottega, 1988a-d, 1994, and Loia and
Bottega, 1994). In all cases considered, debonding was seen to occur in one or in a
combination of several ways ; stable, stable followed by arrest, unstable followed by stable,
or catastrophic. As for the case of flat structures, debonding was seen to ensue at lower
load levels for stiffer patches.
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To conclude, it was seen that nonvanishing initial curvature of the structure influences
the debonding behavior of the class of structures considered.
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APPENDIX: BOND ZONE STRESSES

The expressions for the interfacial stresses (Lagrange multipiers) t(6) and a,(0), #€ S,. are found from the
equations for the primitive structures in region S, (not presented) together with the corresponding equations for
the composite structure, eqns (13a,b) for i = 1. along with eqns (17). (18a) and (30). After some manipulation it
is found that

/ /
(0) = —C(p* . ;)M ) (Al)

and

D, h, C, h* .
o, (0) = — D—'*[p =Nyl =p")] =T 7(0) L [N” + 5 Ck,y ((!)}(1 - .§>. (A2)

~



